Мы всегда вам рады


Разработан эффективный алгоритм поиска конгруэнтных чисел Печать E-mail
Автор Пола   
 
Подтверждение сложности проблемы: длина гипотенузы треугольника, соответствующего конгруэнтному числу 157, выражается дробью, в числителе которой 48 знаков (иллюстрация из книги В. В. Острика и М. А. Цфасмана «Алгебраическая геометрия и теория чисел»).Математики из Великобритании, США, Австралии и Уругвая составили полный список конгруэнтных чисел, которые лежат в промежутке от нуля до триллиона.

Конгруэнтными называют те натуральные числа, которые могут представлять собой значение площади прямоугольного треугольника со сторонами, выраженными рациональными числами.

Наименьшее конгруэнтное число — 5 (соответствующий ему треугольник имеет стороны длиной 3/2, 20/3 и 41/6); за ним следуют 6, 7, 13, 14, 15, 20 и так далее.
 
Стоит отметить простое правило: если число s конгруэнтно, то конгруэнтным будет и число s•n2, где n — натуральное. Основную сложность, таким образом, представляет поиск новых конгруэнтных чисел, свободных от квадратов.

Впервые конгруэнтными числами заинтересовался персидский математик Ал-Караджи (ок. 953–1029), на которого оказали влияние труды греческого ученого Диофанта (ок. 21–290), затрагивавшего смежные проблемы.

 
 
В 1225 году Фибоначчи выяснил, что числа 5 и 7 конгруэнтны, и предположил, что число 1, напротив, не является конгруэнтным; лишь в 1659 году это утверждение было доказано Пьером Ферма.
 
К 1915 году были определены все конгруэнтные числа в пределах 100, однако в пределах 1 000 некоторые неясности сохранялись даже к 1980 году.

В 1982 году Джеррольд Таннел (Jerrold Tunnell) из Университета Ратджерса (США) сумел значительно продвинуться в этом направлении, связав конгруэнтные числа с другим хорошо изученным математическим объектом — эллиптическими кривыми.
 
Исследователь сформулировал довольно простой критерий Таннела, который используется для проверки того, конгруэнтно ли заданное число.

Строго доказать истинность этого критерия, однако, никому пока не удалось: доказательство тесно связано с одной из открытых проблем современной математики — гипотезой Бёрча и Свиннертон-Дайера, за решение которой установлена награда в один миллион долларов.

Авторы работы также полагались в своих расчетах на критерий Таннела. Для того чтобы обеспечить точность результатов, ученые выполнили вычисления дважды, на двух разных компьютерах и по разным оригинальным алгоритмам.

Первый компьютер был построен на базе четырех процессоров AMD Opteron 8378 Quad-Core с тактовой частотой 2,4 ГГц, второй — на базе четырех процессоров Intel Xeon X7460 с частотой 2,66 ГГц; оба компьютера оснащались оперативной памятью объемом 128 Гб.

Впрочем, даже такого объема оказалось недостаточно для того, чтобы оперировать гигантскими числами, которые были задействованы в процессе вычисления, и исследователям приходилось активно использовать дисковую подсистему.

В результате ученые составили список из 3 148 379 694 конгруэнтных чисел, которые не превышают триллиона.

По оценкам их коллег, в промежутке от триллиона до квадриллиона (1015) должно содержаться еще около 800 млрд конгруэнтных чисел; исследователи планируют проверить это предположение, когда у них появится компьютер с жесткими дисками соответствующего объема. 
 
Публикация данной статьи возможна только при наличии ссылки на источник: http://net.compulenta.ru
 
« Пред.   След. »

Мысли и слова великих людей

 
Один лишь не может ничем побежден быть желудок Жадный, насильственный, множество бед приключающий смертным. /Гомер/

Самое интересное на сайте


Богатство
Психовирус
Радость
Концепция
Фриланс
Мудрость
Шоубизнес
Форекс
Безопасность

Полезно знать


Онлайн бизнес

Онлайн бизнес Данный раздел сайта посвящён именно онлайн бизнесу. Только здесь вы получите быстрый доступ к последним и наиболее эффективным способам заработка в сети Интернет.

Бизнес идеи

Бизнес идеи Здесь вы сможете найти самые важные статьи о том как начать и развить свой бизнес в сети Интернет. Создание  бизнеса приносящего стабильный доход станет реальностью.

Оптимизация сайта

Оптимизация сайта SEO оптимизация – это определенный тип создания и редактирования текстов для web - сайтов. И знание этих секретов крайне важно для ведения бизнеса в интернете.

Удалённая работа

Удалённая работа Этот раздел сайта призван помочь тем, кто решил научиться вести бизнес в сети самостоятельно. А вот от того, как вы распорядитесь этими знаниями, будет зависеть ваш заработок.